On discontinuous groups acting on homogeneous spaces with non-compact isotropy subgroups

Toshiyuki Kobayashi¹

Institute for Advanced Study, School of Mathematics, Princeton, NJ 08540, USA Department of Mathematical Sciences, University of Tokyo, Meguro, Komaba, 153, Tokyo, Japan

Received 29 August 1992

Let G be a Lie group and H a closed subgroup. The action of a discrete subgroup Γ of G on G/H is not always properly discontinuous if H is non-compact. If the action of Γ is properly discontinuous, then Γ is called a discontinuous group acting on G/H. If G/H is of reductive type, it is known that there are *no* infinite discontinuous groups acting on G/H (called Calabi-Markus phenomenon) iff \mathbb{R} -rank $G = \mathbb{R}$ -rank H. For a better understanding of discontinuous groups we are thus interested in cases (i) where G/H is non-reductive, and (ii) where G/H is of reductive type with \mathbb{R} -rank $G = \mathbb{R}$ -rank H + 1. In this paper we consider the Calabi-Markus phenomenon in solvable cases of type (i). We also study discontinuous groups of reductive group manifolds for case (ii) and generalize a result of Kulkarni-Raymond to higher dimensions.

Keywords: locally homogeneous manifolds, Calabi–Markus phenomenon, discontinuous groups 1991 MSC: 22 E 40

0. Introduction

One of the basic problems in geometry has been to study how local geometric structure affects the global nature of a manifold. Our concern in this paper is with a special problem of this kind: "What is a possible fundamental group π_1 of a manifold which is locally isomorphic to a particular homogeneous space?" This is similar to a well-studied problem in differential geometry about a possible fundamental group π_1 of a manifold under certain curvature conditions. Here are some typical examples:

(1) In the physics of relativistic cosmology, the space-time continuum is taken to be a Lorentz manifold M^4 . Here a Lorentz manifold M^n is an *n*-dimensional manifold which bears a pseudo-Riemannian metric of type $(n - 1)^{-1}$

¹ The author is supported by the NSF grant DMS-9100383.

1, 1). The manifold M is said to be complete if every geodesic can be defined on all time intervals. A relativistic spherical space form is a complete Lorentz manifold M^n for $n \ge 3$ with constant curvature K = +1. It is a remarkable result due to Calabi-Markus that every relativistic space form is non-compact and has a finite fundamental group π_1 [C-M].

(2) A Clifford-Klein form of a connected and simply connected Riemannian manifold M is a Riemannian manifold whose universal Riemannian covering is isomorphic to M. For example, any compact Riemann surface of genus ≥ 2 is regarded as a compact Clifford-Klein form of the Poincaré plane. More generally, there always exists a compact Clifford-Klein space form of a Riemannian symmetric space of the noncompact type [Bo,B-H,M-T].

(3) An affine manifold M^n is a manifold which admits a torsion free affine connection whose curvature tensor vanishes. It is called Auslander's conjecture that the fundamental group π_1 of any compact complete affine manifold is virtually solvable (see refs. [A,Mi,Ma] for instance).

These cases can be reformulated in the context of discontinuous groups acting on homogeneous spaces as follows. Let G be a Lie group and H a closed subgroup of G. A subgroup Γ of G is called a discontinuous group acting on a homogeneous space G/H if the action of Γ on G/H from the left is properly discontinuous. A discontinuous group acting on G/H is automatically discrete in G, whatever H is. A distinguishing feature in our setting is that H is non-compact, and consequently, a discrete subgroup is not necessarily a discontinuous group acting on G/H. This is the primary difficulty in our study. On the other hand, in the above definition of a discontinuous group we do not require freeness of the action. A small price to pay is that the double coset space $\Gamma \setminus G/H$ is not necessarily a manifold but only a V-manifold in the sense of Satake [Sa]. However, if there exists a cocompact discontinuous group Γ acting on G/H (i.e., a discontinuous group acting on G/H such that $\Gamma \setminus G/H$ is compact), then we can replace Γ by a subgroup Γ' of finite index in Γ so that $\Gamma' \setminus G/H$ is a compact smooth manifold by virtue of the result in ref. [Se]. Now the above examples are reformulated respectively as follows:

(1') Any discontinuous group acting on SO(n, 1)/SO(n - 1, 1) is finite.

(2') There exists a cocompact discontinuous group acting on G/K if G is a real linear semisimple Lie group and if K is a maximal compact subgroup of G.

(3') Any cocompact discontinuous group acting on $GL(n,\mathbb{R}) \ltimes \mathbb{R}^n/GL(n,\mathbb{R})$ is conjectured to be virtually solvable.

Here are some comments on recent progress on (1'), (2') and (3').

Conjecture (3') remains open except for some special cases such as $O(n) \ltimes \mathbb{R}^n / O(n)$ (Bieberbach's theorem, see ref. [R], corollary 8.26), $O(n,1) \ltimes \mathbb{R}^n / O(n,1)$ [G-K], $G \ltimes \mathbb{R}^n / G$ where G is a subgroup of $GL(n,\mathbb{R})$ which is locally isomorphic to a direct product of semisimple Lie groups of rank 1 [To].

It also remains open to classify the homogeneous spaces of reductive type (see section 3 for definition) that admit compact Clifford-Klein space forms [see (2')]. Partial results have been obtained in refs. [Bo,M-T,Ku,Ko1,Ko3].

The feature in (1') without infinite discontinuous groups is called *Calabi-Markus phenomenon*. In a previous paper we have established a criterion for the Calabi-Markus phenomenon in the case of a homogeneous space of reductive type:

Fact 0.1 (see refs. [C-M,Wo1,Wo2,Wo3,Ku,Ko1]). Let G/H be a homogeneous space of reductive type (see section 3 for definition). Then the following conditions are equivalent:

(i) Any discontinuous group acting on G/H is finite.

(ii) \mathbb{R} -rank $G = \mathbb{R}$ -rank H.

In view of this, we wish to proceed a step further by posing the following questions:

Question 0.2. Suppose G/H is *not* of reductive type. Find a condition that G/H admits an infinite discontinuous group.

Question 0.3. Suppose G/H is of reductive type with \mathbb{R} -rank $G - \mathbb{R}$ -rank H = 1. What can we say about a possible infinite discontinuous group acting on G/H?

In answer to question 0.2 for solvable homogeneous spaces, we shall prove

Theorem 1 (see section 2). Suppose G is a solvable Lie group and H is a proper closed subgroup of G. Then there exists a discrete subgroup Γ of G acting on G/H properly discontinuously and freely such that the fundamental group $\pi_1(\Gamma \setminus G/H)$ is infinite.

This result is in sharp contrast to the reductive case; For example, the following homogeneous spaces $G/H = GL(n, \mathbb{C})/GL(n, \mathbb{R})$, $GL(m + n, \mathbb{R})/GL(m, \mathbb{R}) \times GL(n, \mathbb{R})$, U(p,q)/SO(p,q), which are of the reductive type, do not admit infinite discontinuous groups by fact (0.1).

Given a subgroup Φ of G and a homomorphism $\rho : \Phi \to G$, we form a subgroup of $G \times G$ as

$$\boldsymbol{\Phi}(\boldsymbol{\rho}) := \{(\boldsymbol{\gamma}, \boldsymbol{\rho}(\boldsymbol{\gamma})) : \boldsymbol{\gamma} \in \boldsymbol{\Phi}\} \ (\subset G \times G).$$

If the homomorphism ρ is the trivial representation 1, then the action of $\Phi(1) = \Phi \times 1$ on $G \simeq G \times G/\text{diag } G$ is nothing but the action from the left. In this sense we might regard the action of $\Phi(\rho)$ as a "deformation" of the left action of Φ . If

 Φ is a discrete subgroup of G and if the image $\rho(\Phi)$ is relatively compact, then $\Phi(\rho)$ is also a discontinuous group acting on the group manifold $G \times G/\text{diag } G$.

For example, suppose that $\Phi \subset PSL(2,\mathbb{R})$ is the fundamental group of a compact Riemann surface M of genus $g \geq 2$, and fix generators of the first homology group $H_1(M,\mathbb{Z}) \simeq \mathbb{Z}^{2g}$. Then we find the moduli space of group homomorphisms from Φ to SO(2) to be Hom $(\Phi, SO(2)) \simeq \mathbb{T}^{2g}$. That is, $\lambda \in \mathbb{T}^{2g}$ defines a homomorphism $\varphi_{\lambda} : \mathbb{Z}^{2g} \to \mathbb{T} \simeq SO(2) \subset PSL(2,\mathbb{R})$, and we get a homomorphism $\rho_{\lambda} : \Phi \to PSL(2,\mathbb{R})$ as a composition of φ_{λ} and $\Phi \simeq \pi_1(M) \to \Phi/[\Phi, \Phi] \simeq H_1(M, \mathbb{Z}) \simeq \mathbb{Z}^{2g}$. Then $\Phi(\rho_{\lambda}) = \{(\gamma, \rho_{\lambda}(\gamma)) : \gamma \in \Phi\}$ forms a family of cocompact discontinuous groups acting on the group manifold of $G \times G/$ diag G parametrized by $\lambda \in \mathbb{T}^{2g}$.

Even though it is hopeless to classify all discontinuous groups arising in question 0.3 because it involves all discrete subgroups of a semisimple Lie group Gwith \mathbb{R} -rank G = 1 (i.e. discontinuous groups acting on $G/\{e\}$), we can describe some aspects of the structure of such a discontinuous group when G/H is a group manifold $G' \times G'/\operatorname{diag} G'$, where \mathbb{R} -rank $(G' \times G') - \mathbb{R}$ -rank (G') = 1 (i.e. \mathbb{R} -rank G' = 1).

Theorem 2 (see corollary 3.4). Let G be a connected non-compact reductive linear group. Then the following conditions are equivalent.

(1) \mathbb{R} -rank G = 1.

(2) For any torsionless discontinuous group Γ acting on $G \times G/\operatorname{diag} G$, we can find a subgroup $\Phi \subset G$ and a homomorphism $\rho : \Phi \to G$ such that $\Gamma = \{(\gamma, \rho(\gamma)) : \gamma \in \Phi\}$ up to a switch of factor.

Remark 1. Kulkarni and Raymond first proved $(1) \Rightarrow (2)$ when $G = SL(2, \mathbb{R})$ in their study of three-dimensional Lorentz space forms (see theorem 5.2 and introduction in ref. [K-R]). Their proof depends on the key lemma that no discontinuous group acting on $G \times G/$ diag G contains an abelian subgroup $\simeq \mathbb{Z}^2$ if $G = SL(2, \mathbb{R})$. However, this is not always true even if we assume G is of \mathbb{R} -rank 1. For example, we can show that there exists an abelian discontinuous group $\simeq \mathbb{Z}^{n-1}$ acting on $G \times G/$ diag G if G = SO(n, 1).

Remark 2. Theorem 2 leads us to a natural question about the condition on the pair Φ and ρ such that $\Phi(\rho)$ is a discontinuous group acting on the group manifold $G \times G/\text{diag } G$. In the case $G = \text{SL}(2,\mathbb{R})$, it is known to be necessary that Φ is discrete (possibly after a switch of factor) [K-R]. It is not known to the author whether it is necessary that Φ is discrete (after a switch of factor) for a general \mathbb{R} -rank 1 group. On the other hand, it is sufficient for the discontinuity of $\Phi(\rho)$ that Φ is discrete and ρ has a relatively compact image. There are a number of examples of such homomorphisms ρ . For instance, if G is a complex semisimple Lie group and Φ is arithmetic, then we can find a non-trivial homomorphism ρ into a maximal compact group of G (e.g., ref. [Z], example 5.2.12). If $G = SO_0(n, 1)$ and Φ is an arithmetic cocompact discrete subgroup of G such that the first Betti number b_1 of $\Phi \setminus SO_0(n, 1)/SO(n)$ does not vanish (Thurston's conjecture, see ref. [L]), then we have a continuous family of discontinuous groups $\Psi(\rho)$ parametrized by $\rho \in Hom(\Phi, \mathbb{T}^{[n/2]}) \simeq \mathbb{T}^{b_1[n/2]}$ when $G = SO_0(n, 1)$, as we saw for $G = PSL(2, \mathbb{R})$. Finally we also remark that in the case $G = SL(2, \mathbb{R})$, some other sufficient conditions for (Φ, ρ) are also known that assure the discontinuity of $\Phi(\rho)$ on $G \times G/\text{diag } G$ (see ref. [G]), but it still remains open to classify all possible (Φ, ρ) such that $\Phi(\rho)$ is a cocompact discontinuous group acting on $SL(2, \mathbb{R}) \times SL(2, \mathbb{R})/\text{diag } SL(2, \mathbb{R})$.

Remark 3. It is remarkable that the example in remark 2 shows that "local rigidity" fails in higher dimensions in the case where the isotropy group is not compact. To be more precise, let Φ be a finitely generated group and G a Lie group. Let $R(\Phi, G)$ be the set of all homomorphisms of Φ into G equipped with the topology of pointwise convergence. Let H be a closed subgroup of G. We define

 $R(\Phi, G, H) := u \in R(\Phi, G) : u$ is injective,

 $u(\Phi)$ is a discontinuous group acting on G/H;

 $R_0(\Phi, G, H) := \{ u \in R(\Phi, G, H) : u(\Phi) \setminus G/H \text{ is compact} \}.$

A homomorphism $u \in R(\Phi, G, H)$ is called *locally rigid* if the orbit of u in $R(\Phi, G, H)$ under G is open in $R(\Phi, G, H)$. If G is semisimple with trivial center and no compact factors, then local rigidity holds for any $u \in R_0(\Phi, G, \{e\})$ (or $u \in R_0(\Phi, G, K)$ where K is a maximal compact group of G) unless $G = PSL(2,\mathbb{R})$ (Weil's rigidity theorem). However, in the case of $G = SO_0(n, 1)$, local rigidity fails for $G \times G/$ diag G because two generic elements in $\{\Phi(\rho) : \rho \in Hom(\Phi, \mathbb{T}^{b_1[n/2]})\} \subset R_0(\Phi, G \times G, \text{diag } G)$ (with the notation of remark 2) are not conjugate under $G \times G$.

1. Preliminary results on proper actions

First of all, let us recall the definition of a proper continuous map.

Definition 1.1 (see ref. [Bou]). Let $f : X \to Y$ be a continuous map between locally compact Hausdorff spaces. f is called *proper* iff one of the following equivalent conditions holds.

(i) f is a closed map, and $f^{-1}(y)$ is compact for any $y \in Y$.

(ii) For any topological space $Z, f: X \times Z \to Y \times Z$ is a closed map.

(iii) $f^{-1}(S)$ is compact for any compact subset S of Y.

If f is a proper map, then it follows easily that a closed subset Z of X is compact iff f(Z) is contained in some compact set of Y.

Definition 1.2. Suppose that a locally compact topological (Hausdorff) group *G* acts continuously on a locally compact Hausdorff space *X*. This action is called *proper* iff the map $G \times X \ni (g, x) \mapsto (x, g \cdot x) \in X \times X$ is proper. Equivalently, $G_S := \{g \in G : g \cdot S \cap S \neq \emptyset\}$ is compact for every compact subset *S* in *X*. The action is called *properly discontinuous* iff *G* is discrete and acts properly on *X*.

The following elementary lemma deals with proper actions under an equivariant map.

Lemma 1.3. Let G_i (i = 1, 2) be locally compact groups and $L_i, H_i \subset G_i$ be closed subgroups. Suppose that $f : G_1 \to G_2$ is a (continuous) homomorphism such that $f(L_1) \subset L_2$, $f(H_1) \subset H_2$. Assume that $f(L_1)$ is closed in G_2 .

(1) Assume that $L_1 \cap \text{Ker } f$ is compact. If the L_2 action on G_2/H_2 is proper, then the L_1 action on G_1/H_1 is also proper.

(2) Assume that $f(G_1)H_2 = G_2$, that $G_1 \to G_2/H_2$ is an open map, and that the quotients $L_2/f(L_1)$, $f^{-1}(H_2)/H_1$ are compact. If the L_1 action on G_1/H_1 is proper, then the L_2 action on G_2/H_2 is also proper.

Remark 1.4. If G_i are (separable) Lie groups, then the first assumption $f(G_1)H_2 = G_2$ in (2) implies the second one that the map $G_1 \rightarrow G_2/H_2$ is open.

Remark 1.5. In (2), the assumption $f(G_1)H_2 = G_2$ looks very strong. However, we cannot replace this assumption by the weaker one that $G_2/f(G_1)$ is compact. For example, let $G_1 = \mathbb{R}^n$ and W be a finite subgroup of $GL(n, \mathbb{R})$. Then we form a semi-direct product $G_2 := W \ltimes \mathbb{R}^n$. Let $f: G_1 \hookrightarrow G_2$ be a natural inclusion. Fix two abelian subspaces $L_1, H_1 \subset G_1 = \mathbb{R}^n$ such that $L_1 \cap H_1 = \{0\}$ and that $w \cdot L_1 \cap H_1 \neq \{0\}$ for some $w \in W$. Define subgroups of G_2 by $L_2 := L_1$, $H_2 := H_1$, where we regard $G_1 \subset G_2$. Then L_1 acts properly on G_1/H_1 , while L_2 does not act properly on G_2/H_2 . This kind of situation turns up as a reduction of the case where G_i, L_i, H_i are connected reductive groups (see ref. [Ko1], theorem 4.1).

Proof of lemma 1.3.

(1) Fix any compact subset S of G_1 . We want to show that the set $\{g \in L_1 : (g \cdot S \mod H_1) \cap (S \mod H_1) \neq \emptyset$ in $G_1/H_1\} = L_1 \cap SH_1S^{-1}$ is compact. In view of

$$f(L_1 \cap SH_1S^{-1}) \subset L_2 \cap f(S)H_2f(S)^{-1},$$

 $f(L_1 \cap SH_1S^{-1})$ is contained in a compact set if L_2 acts on G_2/H_2 properly. Then $L_1 \cap SH_1S^{-1}$ is compact, since $f_{|L_1} : L_1 \to L_2$ is a proper map because it is a composition of proper maps: $L_1 \rightarrow L_1/L_1 \cap \text{Ker } f \simeq f(L_1) \hookrightarrow L_2$. That is, L_1 acts on G_1/H_1 properly.

(2) As $f(L_1)$ is a closed and cocompact subgroup of L_2 , L_2 acts properly iff $f(L_1) (\subset L_2)$ acts properly. So we may and do assume $f(L_1) = L_2$. Take a compact set S_1 of G_1 such that $f^{-1}(H_2) = S_1H_1$. We may assume that S_1 contains the unit of G_1 . Fix any compact subset S of G_2 . Let us show that $L_2 \cap SH_2S^{-1}$ is compact. The existence of a compact subset \tilde{S} of G_1 such that $f(\tilde{S})H_2 \supset S$ follows from the fact that $G_1/f^{-1}(H_2)$ is homeomorphic to G_2/H_2 (see the assumptions that $G_1 \rightarrow G_2/H_2$ is an open map and $f(G_1)H_2 = G_2$). Then we have

$$f^{-1}(L_2 \cap SH_2S^{-1}) \subset f^{-1}(L_2) \cap \tilde{S}f^{-1}(H_2)\tilde{S}^{-1}.$$

In particular, $(f_{|L_1})^{-1} (L_2 \cap SH_2S^{-1})$ is compact if L_1 acts properly on G_1/H_1 , because

$$(f_{|L_1})^{-1} (L_2 \cap SH_2S^{-1}) \subset L_1 \cap f^{-1}(L_2) \cap \tilde{S}f^{-1}(H_2)\tilde{S}^{-1} \subset L_1 \cap \tilde{S}S_1H_1S_1^{-1}\tilde{S}^{-1}.$$

Under our assumption $f(L_1) = L_2$, we have $L_2 \cap SH_2S^{-1} = (f_{|L_1}) \circ (f_{|L_1})^{-1}$ $(L_2 \cap SH_2S^{-1})$ is compact. Thus L_2 acts on G_2/H_2 properly.

2. Homogeneous spaces of solvable groups

First we recall a nice topological property of a subgroup of a solvable Lie group due to Chevalley.

Fact 2.1 [Ch]. Let G be a one-connected (real) solvable Lie group and H be a connected subgroup of G. Then H is closed and one-connected.

Our main theorem in this section is

Theorem 2.2. Let G be a solvable Lie group and H a proper closed subgroup of G. Then there exists a discrete subgroup Γ of G that acts on G/H properly discontinuously and freely such that the fundamental group $\pi_1(\Gamma \setminus G/H)$ is infinite.

If $\sharp \pi_1(G/H) = \infty$, then we can take $\Gamma = \{e\}$ and we are done. Hereafter we suppose $\pi_1(G/H)$ is a finite group. We put $G_2 := G$, $H_2 := H$, $G_1 :=$ the universal covering group of G_2 and $H_1 :=$ the connected subgroup of G_1 with the Lie algebra \mathfrak{h} . We write $f : G_1 \to G_2$ for the covering map. Because $\pi_1(G/H) =$ $\pi_1(G_2/H_2) = \pi_1(G_1/f^{-1}(H_2)) = f^{-1}(H_2)/H_1$, and because $\pi_1(G/H)$ is a finite group, we can apply lemma 1.3(2) with any subgroup $L_1 \subset G_1$ and with $L_2 := f(L_1)$. Therefore, in order to prove theorem 2.2 it suffices to prove: **Theorem 2.2'**. Let G be a one-connected (real) solvable group and H be a connected proper subgroup of G. Then there exists a discontinuous group acting on G/H which is isomorphic to \mathbb{Z} .

Proof. We proceed by induction on the dimension of G. Theorem 2.2' is clear when dim G = 1, namely, when $G \simeq \mathbb{R} \supset H \simeq \{0\}$. Suppose that dim $G \ge 2$. Then there exists a connected normal subgroup N of G with $0 < \dim N < \dim G$. We will divide into two cases according as $HN \subsetneq G$ or HN = G.

(I) Assume that $HN \subseteq G$. The subgroup HN is connected and therefore closed by fact 2.1. So $\overline{H} := H/H \cap N = HN/N$ is a proper closed subgroup of $\overline{G} := G/N$. We write the canonical projection $\pi : G \to \overline{G} = G/N$. It follows from the inductive assumption that we can find a discrete subgroup $\overline{\Gamma}$ of \overline{G} such that $\overline{\Gamma}$ is isomorphic to \mathbb{Z} and acts on $\overline{G}/\overline{H}$ properly. Fix an element $\gamma \in G$ such that $\pi(\gamma)$ is a generator of $\overline{\Gamma}$. Put $\Gamma := \langle \gamma \rangle$. We have $\pi(\Gamma) = \overline{\Gamma}$, and therefore $\Gamma \simeq \mathbb{Z}$ and $\Gamma \cap N = \{e\}$. On the other hand, $\overline{\Gamma}$ is discrete and so is Γ . Applying lemma 1.3(1), we have now shown that Γ acts on G/H properly discontinuously.

(II) Assume that HN = G. We have $G/H \simeq N/N \cap H$ and $N \cap H \subsetneq N$. Since $\pi_1(N/N \cap H) = \pi_1(G/H) = \{e\}, N \cap H$ is connected. Thus $(N, N \cap H)$ satisfies the assumption of theorem 2.2' and dim $N < \dim G$. Therefore we can find a discrete group $\Gamma \simeq \mathbb{Z}$ of N which acts on $N/N \cap H$ from the inductive assumption. Clearly, Γ is a subgroup of G acting properly discontinuously on G/H.

3. R-rank 1 semisimple group manifolds

Throughout this section, we assume that G is a connected real reductive linear Lie group. First we set up notation. Let G be a real linear reductive Lie group, with real Lie algebra g. Given a Cartan involution θ of G, we write a Cartan decomposition of its Lie algebra as g = t + p. Fix a maximally abelian subspace $a \subset p$. a is called a maximally split abelian subspace for G. We write W(g, a) for the Weyl group associated to the root system of $\Sigma(g, a)$. Let \mathbb{R} -rank $G := \dim a$, the real rank of G. Let H be a closed subgroup of G which has finitely many connected components. If there exists a Cartan involution of G which stabilizes H, then H is called reductive in G and G/H is called a homogeneous space of reductive type. In this case, H has a Cartan decomposition $H = (H \cap K) \exp(\mathfrak{h} \cap p)$, and \mathfrak{h} is reductive in g, namely, the adjoint representation $\mathfrak{h} \to \mathfrak{gl}(g)$ is completely reducible. Let a_H be a maximally split abelian subspace for H. Then there exists an element g of G such that $\operatorname{Ad}(g)a_H \subset a$. Put $\mathfrak{a}(H) := \operatorname{Ad}(g)a_H$, which is uniquely defined up to conjugacy of $W(\mathfrak{g},\mathfrak{a})$.

We shall find some structure theorem of a discontinuous group acting on a

group manifold $G \times G / \operatorname{diag} G$ when \mathbb{R} -rank G = 1.

Lemma 3.1. If \mathbb{R} -rank G = 1 and $x \in G$ is a semisimple and non-elliptic element, then $L := Z_G(x)$ is a direct product of a compact group and \mathbb{R} .

Proof. There exists a Cartan involution θ of G such that $\theta L = L$. Then we have a Cartan decomposition of L:

$$\varphi : (\mathfrak{l} \cap \mathfrak{p}) \times (L \cap K) \xrightarrow{\sim} L, \qquad (X, k) \mapsto (\exp X) k.$$

Let us denote by C the center of L. According to the above decomposition, we have $C = \exp(\mathfrak{c} \cap \mathfrak{p})(C \cap K)$. It follows from the assumption that $\langle x \rangle := \{x^n : n \in \mathbb{Z}\} \simeq \mathbb{Z}$ is a discrete subgroup of G and $\langle x \rangle \subset C$. Since G is a linear group, $C \cap K$ is compact and so C is a closed abelian group with at most finitely many connected components. Therefore $\dim \mathfrak{c} \cap \mathfrak{p} \ge 1$. On the other hand, $1 = \mathbb{R}$ -rank $G \ge \mathbb{R}$ -rank $L = \mathbb{R}$ -rank $[L, L] + \dim \mathfrak{c} \cap \mathfrak{p}$. Thus we have \mathbb{R} -rank [L, L] = 0 and therefore $\mathbb{I} \cap \mathfrak{p} = \mathfrak{c} \cap \mathfrak{p} (\simeq \mathbb{R})$. Hence $\varphi : (\mathfrak{c} \cap \mathfrak{p}) \times (L \cap K) \to L$ is a Lie group isomorphism, where we regard $\mathfrak{c} \cap \mathfrak{p}$ as an additive group.

Lemma 3.2. If \mathbb{R} -rank G = 1 and Γ is an infinite discrete subgroup of G, then there exists a compact set S of G such that $S\Gamma S^{-1} = G$.

Proof. It is known that any infinite discrete subgroup Γ in a linear Lie group contains an element of infinite order. Fix such an element $\gamma \in \Gamma$. In order to prove lemma 3.2 it suffices to show the existence of a compact set S such that $S\langle\gamma\rangle S^{-1} = G$. Let $\gamma = \gamma_s \gamma_u$ be its Jordan decomposition (see ref. [War], proposition 1.4.3.3), where γ_s is semisimple and γ_u is unipotent such that $\gamma_s \gamma_u = \gamma_u \gamma_s$. We divide into two cases according to whether γ_s is elliptic or not.

(I) Assume that γ_s is a non-elliptic element of G. It follows from lemma 3.1 that the only unipotent element of $Z_G(\gamma_s)$ is the identity. Since $\gamma_u \in Z_G(\gamma_s)$, we have $\gamma_u = 1$. Thus $\gamma = \gamma_s$ is contained in a maximally split Cartan subgroup J. Choose a Cartan involution θ which stabilizes J. We write the corresponding Cartan decomposition $G = \exp \mathfrak{p}K$ and we write J = TA, where $T := J \cap K$ and $A := J \cap \exp \mathfrak{p}$. We can write $\gamma = t \exp(Y)$ where $t \in T$, $Y \in \mathfrak{a}$. Define a compact subset of G by $S := K \{\exp sY : 0 \le s \le 1\}$. Then $S(\gamma)S^{-1} \supset KAK = G$.

(II) Assume that γ_s is elliptic. Then $\gamma_u \neq 1$ since $\langle \gamma \rangle = \{\gamma_s^n \gamma_u^n : n \in \mathbb{Z}\}$ is discrete in G. By the theorem of Jacobson-Morozov, there is a Lie group homomorphism $\psi : SL(2,\mathbb{R}) \to G$ such that $\psi(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}) = \gamma_u$. There is a Cartan involution θ of G such that $\theta\psi(SL(2,\mathbb{R})) = \psi(SL(2,\mathbb{R}))$ (see ref. [He], p. 277). In particular, $A := \psi(\{\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}) : a > 0\})$ is a maximally split abelian subgroup of G, which is of \mathbb{R} -rank 1. Define a compact subset of G by S :=

 $K\psi(\{(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix}): 0 \le x \le 1\})\overline{\langle \gamma_s \rangle}$. Then

$$S\langle \gamma \rangle S^{-1} \supset K \psi \left(\left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\} \right) K$$
$$\supset K \psi \left(\mathrm{SL}(2, \mathbb{R}) \right) K \supset K A K = G.$$

Theorem 3.3. Let G be a connected reductive linear Lie group. Then the following conditions are equivalent.

(1) \mathbb{R} -rank $G \geq 2$.

(2) There exist infinite discrete subgroups Γ_i of G (i = 1, 2) such that $\Gamma := \Gamma_1 \times \Gamma_2$ acts properly discontinuously on the group manifold $G \times G/\text{diag } G$.

Proof. We may restrict ourselves to the case where G is non-compact, namely, where \mathbb{R} -rank $G \ge 1$.

Suppose that \mathbb{R} -rank $G \ge 2$. We can find abelian subspaces $\mathfrak{a}_1, \mathfrak{a}_2 \subset \mathfrak{a}$ such that dim $\mathfrak{a}_i \ge 1$ and that $W(\mathfrak{g}, \mathfrak{a}) \cdot \mathfrak{a}_1 \cap \mathfrak{a}_2 = \{0\}$. Put $A_i := \exp \mathfrak{a}_i$; then A_1 acts properly on G/A_2 from ref. [Ko1], theorem 4.1. Take any lattices Γ_i in abelian Lie groups A_i (i = 1, 2). Then Γ_1 acts properly discontinuously on G/Γ_2 , or equivalently, the discrete group $\Gamma_1 \times \Gamma_2$ acts properly discontinuously on $G \times G/\operatorname{diag} G$.

Conversely, suppose that \mathbb{R} -rank G = 1. We recall that a subgroup Γ of $G \times G$ acts properly on $G \times G/\operatorname{diag} G$ iff $C\Gamma C^{-1} \cap \operatorname{diag} G$ is compact for any compact subset C of $G \times G$. In particular, if there exists a compact set C in $G \times G$ such that $C\Gamma C^{-1} = G \times G$, then Γ acts on $G \times G/\operatorname{diag} G$ properly only if G is compact. Let Γ_i (i = 1, 2) be both infinite discrete subgroups of G. It follows from lemma 3.2 that there exists a compact set S of G such that $S\Gamma_i S^{-1} = G$. In particular, $(S \times S) (\Gamma_1 \times \Gamma_2) (S^{-1} \times S^{-1}) = G \times G$. Therefore the action of $\Gamma_1 \times \Gamma_2$ on $G \times G/\operatorname{diag} G$ is not properly discontinuous because G is non-compact.

Corollary 3.4. Let G be a connected non-compact reductive linear group. Then the following conditions are equivalent.

(1) \mathbb{R} -rank G = 1.

(2) Any torsionless discontinuous group Γ in $G \times G/\operatorname{diag} G$ is of the following form up to a switch of factor: $\Gamma = \{(\gamma, \rho(\gamma)) : \gamma \in \Phi\}$, with $\Phi \subset G$ a subgroup and with $\rho : \Phi \to G$ a homomorphism.

Proof. (2) \Rightarrow (1) If \mathbb{R} -rank $G \geq 2$, then there exist discrete subgroups $\Gamma_i \simeq \mathbb{Z}^{n_i}$ $(n_i \geq 1)$ of G such that $\Gamma_1 \times \Gamma_2$ acts properly discontinuously on $G \times G/\text{diag } G$ from theorem 3.3.

(1) \Rightarrow (2) Suppose that Γ is a torsion free discontinuous group acting on $G \times G/\text{diag } G$. Let $p_j : G \times G \rightarrow G$ (j = 1, 2) be natural projections to the *j*th factor. Let $\Gamma_j := \text{Ker } p_j \cap \Gamma$ for j = 1, 2. Then $\Gamma_1 \times \Gamma_2$ is regarded as a subgroup of $\Gamma \subset G \times G$, and so is also a discontinuous group acting on $G \times G/\text{diag } G$. It follows

from theorem 3.3 that at least one of Γ_j must be finite if \mathbb{R} -rank G = 1. We can assume Γ_1 is a finite group after switching factor if necessary. As Γ is torsion-free, a finite subgroup Γ_1 must be trivial, namely, $p_{1|\Gamma} : \Gamma \to G$ is injective. Now Γ is of the desired form if we define $\Phi := p_1(\Gamma)$ and $\rho := p_2 \circ p_{1|\Gamma}^{-1}$.

The author would like to thank Professors A. Borel, C. Conley, I.M. Gel'fand and W.M. Goldman for their comments and interest in this work.

References

- [A] L. Auslander, The structure of compact locally affine manifolds, Topology 3 (1964) 131-139.
- [Bo] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963) 111-122.
- [B-H] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math. 75 (1962) 485-535.
- [Bou] N. Bourbaki, Éléments de Mathématique, Topologie Générale, Ch. 3 (Hermann, Paris, 1960).
- [C-M] E. Calabi and L. Markus, Relativistic space forms, Ann. Math. 75 (1962) 63-76.
- [Ch] C. Chevalley, On the topological structure of solvable groups, Ann. Math. 42 (1941) 668-675.
- [G] W.M. Goldman, Nonstandard Lorentz space forms, J. Diff. Geom. 21 (1985) 301-308.
- [G-K] W. Goldman and Y. Kamishima, The fundamental group of a compact flat space form is virtually polycyclic, J. Diff. Geom. 19 (1984) 233-240.
- [He] S. Helgason, *Differential Geometry, Lie Groups and Symmetric Spaces*, Pure Appl. Math. 80 (Academic Press, New York/London, 1978).
- [Ko1] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann. 285 (1989) 249-263.
- [Ko2] T. Kobayashi, Discontinuous groups acting on homogeneous spaces of reductive type, in: Proc. Conf. on *Representation Theories of Lie Groups and Lie Algebras* (Lake Kawaguchi, 1990), organized by T. Oshima, Seminar Reports of Unitary Representation 10 (1990) 41-45; (World Scientific, Singapore, 1992) pp. 59-75.
- [Ko3] T. Kobayashi, A necessary condition for the existence of compact Clifford-Klein forms of homogeneous spaces of reductive type, Duke Math. J. 67 (1992) 653–664.
- [Ku] R.S. Kulkarni, Proper actions and pseudo-Riemannian space forms, Adv. Math. 40 (1981) 10-51.
- [K-R] R.S. Kulkarni and F. Raymond, 3-dimensional Lorentz space-forms and Seifert fiber spaces, J. Diff. Geom. 21 (1985) 231-268.
 - [L] J.S. Li, Non-vanishing theorems for the cohomology of certain arithmetic quotients, preprint.
- [Ma] G.A. Margulis, Free completely discontinuous groups of affine transformations, Sov. Math. Dokl. 28 (1983) 435-439.
- [Mi] J. Milnor, On fundamental groups of complete affinely flat manifold, Adv. Math. 25 (1977) 178-187.
- [M-T] G.D. Mostow and T. Tamagawa, On the compactness of arithmetically defined homogeneous spaces, Ann. Math. 76 (1962) 446-463.
 - [R] M. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihre Grenzgebiete, Vol. 68 (Springer, Berlin, 1972).
 - [Sa] I. Satake, On a generalization of the notion of manifold, Proc. Natl. Acad. Sci. USA 42 (1956) 359–363.

- [Se] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, in: Contributions to Functional Theory (Bombay, 1960) pp. 147-164.
- [To] G. Tomanov, The virtual solvability of the fundamental group of a generalized Lorentz space form, J. Diff. Geom. (1990) 539-547.
- [Wal] N.R. Wallach, Two problems in the theory of automorphic forms, in: Open Problems in Representation Theory, Proc. Conf. at Katata (1986), ed. T. Oshima (Univ. of Tokyo, Tokyo) pp. 39-40.
- [War] G. Warner, Harmonic Analysis on Semisimple Lie Groups, Vol. 1 (Springer, Berlin, 1972).
- [Wo1] J.A. Wolf, The Clifford-Klein space forms of indefinite metric, Ann. Math. 75 (1962) 77-80.
- [Wo2] J.A. Wolf, Isotropic manifolds of indefinite metric, Comments Math. Helv. 39 (1964) 21-64.
- [Wo3] J.A. Wolf, Spaces of Constant Curvature, 5th Ed. (Publish or Perish, 1984).
 - [Z] R.J. Zimmer, *Ergodic Theory and Semisimple Groups*, Monographs in Mathematics, Vol. 81 (Birkhäuser, Basle, 1984).