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Let G be a Lie group and H a closed subgroup. The action of a discrete subgroup I” of
G on G/H is not always properly discontinuous if H is non-compact. If the action of I is
properly discontinuous, then I” is called a discontinuous group acting on G/H. If G/H is of
reductive type, it is known that there are no infinite discontinuous groups acting on G/H
(called Calabi-Markus phenomenon) iff R-rank G = R-rank H. For a better understanding
of discontinuous groups we are thus interested in cases (i) where G/H is non-reductive,
and (ii) where G/H is of reductive type with R-rank G = R-rank H + 1. In this paper
we consider the Calabi-Markus phenomenon in solvable cases of type (i). We also study
discontinuous groups of reductive group manifolds for case (ii) and generalize a result of
Kulkarni-Raymond to higher dimensions.
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0. Introduction

One of the basic problems in geometry has been to study how local geometric
structure affects the global nature of a manifold. Our concern in this paper is
with a special problem of this kind: “What is a possible fundamental group 7,
of a manifold which is locally isomorphic to a particular homogeneous space ?”
This is similar to a well-studied problem in differential geometry about a possible
fundamental group 7, of a manifold under certain curvature conditions. Here
are some typical examples:

(1) In the physics of relativistic cosmology, the space-time continuum is
taken to be a Lorentz manifold M*. Here a Lorentz manifold M" is an n-
dimensional manifold which bears a pseudo-Riemannian metric of type (n —
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1,1). The manifold M is said to be complete if every geodesic can be defined
on all time intervals. A relativistic spherical space form is a complete Lorentz
manifold M" for n > 3 with constant curvature K = 4 1. It is a remarkable
result due to Calabi-Markus that every relativistic space form is non-compact
and has a finite fundamental group n; [C-M].

(2) A Clifford-Klein form of a connected and simply connected Riemannian
manifold M is a Riemannian manifold whose universal Riemannian covering is
isomorphic to M. For example, any compact Riemann surface of genus > 2 is
regarded as a compact Clifford-Klein form of the Poincaré plane. More gener-
ally, there always exists a compact Clifford-Klein space form of a Riemannian
symmetric space of the noncompact type [Bo,B-H.M-T].

(3) An affine manifold A" is a manifold which admits a torsion free affine
connection whose curvature tensor vanishes. It is called Auslander’s conjecture
that the fundamental group 7, of any compact complete affine manifold is vir-
tually solvable (see refs. [A,Mi,Ma] for instance).

These cases can be reformulated in the context of discontinuous groups acting
on homogeneous spaces as follows. Let G be a Lie group and H a closed subgroup
of G. A subgroup I" of G is called a discontinuous group acting on a homogeneous
space G/H if the action of I" on G/H from the left is properly discontinuous. A
discontinuous group acting on G/H is automatically discrete in G, whatever H
is. A distinguishing feature in our setting is that H is non-compact, and conse-
quently, a discrete subgroup is not necessarily a discontinuous group acting on
G/H. This is the primary difficulty in our study. On the other hand, in the above
definition of a discontinuous group we do not require freeness of the action. A
small price to pay is that the double coset space I'\G/H is not necessarily a
manifold but only a V'-manifold in the sense of Satake [Sa]. However, if there
exists a cocompact discontinuous group /" acting on G/H (i.e., a discontinuous
group acting on G/H such that I"'\G/H is compact), then we can replace I by a
subgroup I’ of finite index in I” so that I"'\G/H is a compact smooth manifold
by virtue of the result in ref. [Se]. Now the above examples are reformulated
respectively as follows:

(1”) Any discontinuous group acting on SO(n, 1)/SO(n — 1, 1) is finite.

(2’) There exists a cocompact discontinuous group acting on G/K if G is a
real linear semisimple Lie group and if K is a maximal compact subgroup of G.

(3’) Any cocompact discontinuous group acting on GL(n,R) XR"/GL(n,R)
is conjectured to be virtually solvable.

Here are some comments on recent progress on (1'), (2’) and (3').

Conjecture (3’) remains open except for some special cases such as O(n) X
R"/O(n) (Bieberbach’s theorem, see ref. [R], corollary 8.26), O(n,1) X
R"/O(n, 1) [G-K], GXR"/G where G is a subgroup of GL (n,R) which is locally
isomorphic to a direct product of semisimple Lie groups of rank 1 [To].
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It also remains open to classify the homogeneous spaces of reductive type (see
section 3 for definition) that admit compact Clifford-Klein space forms [see
(2’)]. Partial results have been obtained in refs. [Bo,M-T,Ku,Ko1,Ko3].

The feature in (1’) without infinite discontinuous groups is called Calabi-
Markus phenomenon. In a previous paper we have established a criterion for the
Calabi-Markus phenomenon in the case of a homogeneous space of reductive

type:

Fact 0.1 (see refs. [C-M,Wo0l1,W02,Wo03,Ku,Kol]). Let G/H be a homoge-
neous space of reductive type (see section 3 for definition). Then the following
conditions are equivalent:

(i) Any discontinuous group acting on G/H is finite.

(11) R-rank G = R-rank H.

In view of this, we wish to proceed a step further by posing the following
questions:

Question 0.2. Suppose G/H is not of reductive type. Find a condition that G/H
admits an infinite discontinuous group.

Question 0.3. Suppose G/H is of reductive type with R-rank G — R-rank H = 1.
What can we say about a possible infinite discontinuous group actingon G/H ?

In answer to question 0.2 for solvable homogeneous spaces, we shall prove

Theorem 1 (see section 2). Suppose G is a solvable Lie group and H is a proper
closed subgroup of G. Then there exists a discrete subgroup I' of G acting on G/ H
properly discontinuously and freely such that the fundamental group n\ (I'\G/H )
is infinite.

This result is in sharp contrast to the reductive case; For example, the following
homogeneous spaces G/H = GL(n,C)/GL(n,R), GL(m 4+ n,R)/GL(m,R) x
GL(n,R), U(p,q)/SO(p,q), which are of the reductive type, do not admit
infinite discontinuous groups by fact (0.1).

Given a subgroup @ of G and a homomorphism p : @ — G, we form a
subgroup of G x G as

D(p):={(,p(y)):ye@} (CGxQG).

If the homomorphism p is the trivial representation 1, then the actionof @ (1) =
@ x 1 on G ~ G x G/ diag G is nothing but the action from the left. In this sense
we might regard the action of @ (p) as a “deformation” of the left action of @. If
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@ is a discrete subgroup of G and if the image p (@) is relatively compact, then
D (p) is also a discontinuous group acting on the group manifold G x G/ diag G.

For example, suppose that @ C PSL(2,R) is the fundamental group of a
compact Riemann surface M of genus g (> 2), and fix generators of the first
homology group H,(M,Z) ~ 7*¢. Then we find the moduli space of group
homomorphisms from @ to SO(2) to be Hom(®,SO(2)) ~ T2¢. That is, 4 €
T2¢ defines a homomorphism ¢, : 7Z>¢ — T ~ SO(2) ¢ PSL(2,R), and we
get a homomorphism p; : @ — PSL(2,R) as a composition of ¢; and @ ~
(M) - @/[P,P] ~H (MZ)~ 7%*¢. Then @ (p;) = {(r,pi (7)) 7€ D}
forms a family of cocompact discontinuous groups acting on the group manifold
of G x G/diag G parametrized by 4 € T?¢.

Even though it is hopeless to classify all discontinuous groups arising in ques-
tion 0.3 because it involves all discrete subgroups of a semisimple Lie group G
with R-rank G = 1 (i.e. discontinuous groups acting on G/{¢e}), we can describe
some aspects of the structure of such a discontinuous group when G/H is a
group manifold G’ x G’/ diag G’, where R-rank (G’ x G') —R-rank(G’) = 1 (i.e.
R-rank G’ = 1).

Theorem 2 (see corollary 3.4). Let G be a connected non-compact reductive
linear group. Then the following conditions are equivalent.

(1)R-rank G = 1.

(2) For any torsionless discontinuous group I' acting on G x G/diagG, we
can find a subgroup @ C G and a homomorphism p - @ — G such that I’ =
{(y.p(3)) 7 € @} up to a switch of factor.

Remark 1. Kulkarni and Raymond first proved (1) = (2) when G = SL(2,R)
in their study of three-dimensional Lorentz space forms (see theorem 5.2 and
introduction in ref. [K-R]). Their proof depends on the key lemma that no
discontinuous group acting on G x G/ diag G contains an abelian subgroup ~ 72
if G = SL(2,R). However, this is not always true even if we assume G is of
R-rank 1. For example, we can show that there exists an abelian discontinuous
group ~ 2"~ acting on G x G/diag G if G = SO(n. 1).

Remark 2. Theorem 2 leads us to a natural question about the condition on
the pair @ and p such that @ (p) is a discontinuous group acting on the group
manifold G x G/ diag G. In the case G = SL(2,R), it is known to be necessary
that @ is discrete (possibly after a switch of factor) [K-R]. It is not known to
the author whether it is necessary that @ is discrete (after a switch of factor) for
a general R-rank 1 group. On the other hand, it is sufficient for the discontinuity
of @ (p) that @ is discrete and p has a relatively compact image. There are a
number of examples of such homomorphisms p. For instance, if G is a com-
plex semisimple Lie group and @ is arithmetic, then we can find a non-trivial
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homomorphism p into a maximal compact group of G (e.g., ref. [Z], example
5.2.12). If G = SOg(n, 1) and @ is an arithmetic cocompact discrete subgroup
of G such that the first Betti number b, of @\SOq(n, 1)/SO(n) does not vanish
(Thurston’s conjecture, see ref. [L]), then we have a continuous family of dis-
continuous groups ¥ (p) parametrized by p € Hom (@, T{"/2]) ~ Tb:1[7/2] when
G = SOy (n, 1), as we saw for G = PSL(2,R). Finally we also remark that in the
case G = SL(2,R), some other sufficient conditions for (@, p) are also known
that assure the discontinuity of @ (p) on G x G/diag G (see ref. [G]), but it
still remains open to classify all possible (@, p) such that @ (p) is a cocompact
discontinuous group acting on SL(2,R) x SL(2,R)/diagSL(2,R).

Remark 3. It is remarkable that the example in remark 2 shows that “local
rigidity” fails in higher dimensions in the case where the isotropy group is not
compact. To be more precise, let @ be a finitely generated group and G a Lie
group. Let R(@, G) be the set of all homomorphisms of @ into G equipped with
the topology of pointwise convergence. Let H be a closed subgroup of G. We
define

R(®,G,H) :=u € R(D,G) : u is injective,
u(®) is a discontinuous group acting on G/ H,
Ry(DP,G,H) :={ue R(DP,G,H) : u(P)\G/H is compact} .

A homomorphism u € R(®,G, H) is called locally rigid if the orbit of u in
R(®D,G,H) under Gisopenin R(®, G, H). If G is semisimple with trivial center
and no compact factors, then local rigidity holds for any u € Ro(®, G, {e}) (or
u € Ry(®,G,K) where K is a maximal compact group of G) unless G =
PSL(2,R) (Weil’s rigidity theorem). However, in the case of G = SO (n, 1),
local rigidity fails for G x G/ diag G because two generic elements in {® (p) :
p € Hom(@, T [7/21)} ¢ Ry (P, G x G,diag G) (with the notation of remark 2)
are not conjugate under G x G.

1. Preliminary results on proper actions

First of all, let us recall the definition of a proper continuous map.

Definition 1.1 (see ref. [Bou]). Let f : X — Y be a continuous map between
locally compact Hausdorff spaces. f is called proper iff one of the following
equivalent conditions holds.

(i) f is a closed map, and f~!(y) is compact forany y € Y.

(11) For any topological space Z, f : X x Z — Y x Z is a closed map.

(iii) £ ~1(S) is compact for any compact subset S of Y.



138 T. Kobayashi / On discontinuous groups on homogeneous spaces

If f is a proper map, then it follows easily that a closed subset Z of X is
compact iff /(Z) is contained in some compact set of Y.

Definition 1.2. Suppose that a locally compact topological (Hausdorff) group G
acts continuously on a locally compact Hausdorff space X. This action is called
proper iff the map G x X 3 (g,x) — (x,g-x) € X x X is proper. Equivalently,
Gs:={geG:g-SNS # @} is compact for every compact subset .S in X. The
action is called properly discontinuous iff G is discrete and acts properly on X.

The following elementary lemma deals with proper actions under an equiv-
ariant map.

Lemma 1.3. Let G; (i = 1,2) be locally compact groups and L;,H; C G, be
closed subgroups. Suppose that [ : G, — G, is a (continuous) homomorphism
such that (L) C Ly, f(H,) C Hy. Assume that f (L)) is closed in G.

(1) Assume that L, N Ker f is compact. If the L, action on G,/H> is proper,
then the L, action on G/ H, is also proper.

(2) Assume that f(G)H, = G, that G\ — G,/ H, is an open map, and that
the quotients L,/ f (Ly). f~'(H,)/H, are compact. If the L, action on G,/ H, is
proper, then the L, action on G,/ H, is also proper.

Remark 1.4. If G; are (separable) Lie groups, then the first assumption f (G ) H>
= (G, in (2) implies the second one that the map G, — G,/ H; 1s open.

Remark 1.5. In (2), the assumption f (G,)H, = G, looks very strong. However,
we cannot replace this assumption by the weaker one that G>/f (G ) is compact.
For example, let G; = R" and W be a finite subgroup of GL(#,R). Then we form
a semi-direct product G> := W XR". Let f : G| — G, be a natural inclusion.
Fix two abelian subspaces L, H; C G; = R” such that L; n H; = {0} and that
w - LN Hy # {0} for some w € W. Define subgroups of G, by L, := L,
H, := H,, where we regard G| C G>. Then L, acts properly on G,/H,, while L,
does not act properly on G>/H,. This kind of situation turns up as a reduction
of the case where G, L;, H; are connected reductive groups (see ref. [Kol],
theorem 4.1).

Proof of lemma 1.3.

(1) Fix any compact subset S of G;. We want to show that the set {g € L, :
(g-S mod H)N (S mod H,) # @in G,/H,} = L,NSH,S~! is compact. In
view of

S(LNSHS™ ) c Lyn f(S)Hof (S) 7.
f(L,NnSH;S™") is contained in a compact set if L, acts on G,/H, properly.
Then L, N SH,S~" is compact, since f|;, : L; — L, is a proper map because it
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is a composition of proper maps: L; — L;/LyNnKer f ~ f(L,) — L,. That is,
L, acts on G/ H, properly.

(2) As f(L,) is a closed and cocompact subgroup of L,, L, acts properly
iff £ (L,) (C L) acts properly. So we may and do assume f (L;) = L,. Take
a compact set S; of G, such that f~'(H,) = S;H;. We may assume that S,
contains the unit of G;. Fix any compact subset S of G,. Let us show that
L, N SH,S~! is compact. The existence of a compact subset S of G; such that
f(S)H, D S follows from the fact that G,/ f ~' (H,) is homeomorphic to G,/ H,
(see the assumptions that G; — G,/H, is an open map and f (G,)H, = G,).
Then we have

L NSH,S™ ) ¢ ULy NS (Hy) ST

In particular, (fiLl)~l (L,NSH,S™') is compact if L, acts properly on G,/H|,
because

(fir,) " (LanSHS™')y c Linf =" (Ly)nS /=" (Hy)S™' ¢ LinSS H,S, ' 5.

Under our assumption /(L) = Ly, we have L, N SH,S™' = (fir,) o (flLl)“l
(L, NSH,S™') is compact. Thus L, acts on G,/H, properly. O

2. Homogeneous spaces of solvable groups

First we recall a nice topological property of a subgroup of a solvable Lie group
due to Chevalley.

Fact 2.1 [Ch]. Let G be a one-connected (real) solvable Lie group and H be a
connected subgroup of G. Then H is closed and one-connected.

Our main theorem in this section is

Theorem 2.2. Let G be a solvable Lie group and H a proper closed subgroup of
G. Then there exists a discrete subgroup I' of G that acts on G/H properly dis-
continuously and freely such that the fundamental group n\ (I'\G/H) is infinite.

If 7, (G/H) = oc, then we can take I" = {e} and we are done. Hereafter
we suppose 7, (G/H) is a finite group. We put G, := G, H, := H, G| := the
universal covering group of G, and H, := the connected subgroup of G; with the
Lie algebra §. We write f : G; — G, for the covering map. Because 7, (G/H) =
i (Gy/Hy) = m(Gy/f~"(Hy)) = f~'(H,)/H,, and because 7,(G/H) is a
finite group, we can apply lemma 1.3(2) with any subgroup L; C G; and with
L, := f(L;). Therefore, in order to prove theorem 2.2 it suffices to prove:
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Theorem 2.2'. Let G be a one-connected (real) solvable group and H be a connected
proper subgroup of G. Then there exists a discontinuous group acting on G/H
which is isomorphic to Z.

Proof. We proceed by induction on the dimension of G. Theorem 2.2’ is clear
when dimG = 1, namely, when G ~ R D H ~ {0}. Suppose that dimG > 2.
Then there exists a connected normal subgroup N of G with0 < dim N < dim G.
We will divide into two cases according as HN ¢ G or HN = G.

(I) Assume that HN ¢ G. The subgroup HN is connected and therefore
closed by fact 2.1. So H := H/HN N = HN/N is a proper closed subgroup of
G := G/N. We write the canonical projection 7 : G — G = G/N. It follows
from the inductive assumption that we can find a discrete subgroup I" of G such
that I is isomorphic to Z and acts on G/H properly. Fix an element y € G
such that 7 (y) is a generator of I'. Put I := (y). We have n(I") = I, and
therefore I' ~ Z and I' N N = {e}. On the other hand, I is discrete and so is
I'. Applying lemma 1.3(1), we have now shown that I" acts on G/H properly
discontinuously.

(IT) Assume that HN = G. We have G/H ~ NJNNH and NN H g N.
Since my\(N/NNH) = ny(G/H) = {e}, NN H is connected. Thus (N, NN H)
satisfies the assumption of theorem 2.2’ and dim N < dim G. Therefore we can
find a discrete group I ~ Z of N which acts on N/N N H from the inductive
assumption. Clearly, I" is a subgroup of G acting properly discontinuously on
G/H. O

3. R-rank 1 semisimple group manifolds

Throughout this section, we assume that G is a connected real reductive linear
Lie group. First we set up notation. Let G be a real linear reductive Lie group,
with real Lie algebra g. Given a Cartan involution 6 of G, we write a Cartan
decomposition of its Lie algebra as ¢ = t 4+ p. Fix a maximally abelian subspace
a C p. a is called a maximally split abelian subspace for G. We write W (g,a) for
the Weyl group associated to the root system of X' (g,a). Let R-rank G : = dima,
the real rank of G. Let H be a closed subgroup of G which has finitely many
connected components. If there exists a Cartan involution of G which stabilizes
H, then H is called reductive in G and G/H is called a homogeneous space of
reductive type. In this case, H has a Cartan decomposition H = (HNK) exp(hn
p), and b is reductive in g, namely, the adjoint representation ) — gl(g) is
completely reducible. Let ay be a maximally split abelian subspace for H. Then
there exists an element g of G such that Ad(g)ay C a. Puta(H) := Ad(g)ay,
which is uniquely defined up to conjugacy of W (g,a).

We shall find some structure theorem of a discontinuous group acting on a
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group manifold G x G/ diag G when R-rank G = 1.

Lemma 3.1. IfR-rank G = 1 and x € G is a semisimple and non-elliptic element,
then L := Zs(x) is a direct product of a compact group and R.

Proof. There exists a Cartan involution 6 of G such that L = L. Then we have
a Cartan decomposition of L:

¢p:(Inp)x (LNK)SL, (X, k) — (expX)k.

Let us denote by C the center of L. According to the above decomposition,
we have C = exp(cnNp)(C N K). It follows from the assumption that (x) :=
{x":n € Z} ~ Zis a discrete subgroup of G and (x) C C. Since G is a linear
group, C N K is compact and so C is a closed abelian group with at most finitely
many connected components. Therefore dimc¢Np > 1. On the other hand, 1 =
R-rank G > R-rank L = R-rank[L, L] + dimcNp. Thus we have R-rank[L, L] =
0 and therefore [Np = cNp(~R). Hence ¢ : (¢cNp) x (LNK) — L is a Lie
group isomorphism, where we regard ¢ N p as an additive group. O

Lemma 3.2. IfR-rank G = 1 and I' is an infinite discrete subgroup of G, then
there exists a compact set S of G such that SI'S™' = G.

Proof. 1t is known that any infinite discrete subgroup I" in a linear Lie group
contains an element of infinite order. Fix such an element y € I'. In order
to prove lemma 3.2 it suffices to show the existence of a compact set .S such
that S(y)S~—! = G. Let y = ysy, be its Jordan decomposition (see ref. [War],
proposition 1.4.3.3), where y; is semisimple and y, is unipotent such that ysy, =
7u¥s. We divide into two cases according to whether ys is elliptic or not.

(I) Assume that y, is a non-elliptic element of G. It follows from lemma 3.1
that the only unipotent element of Zg (ys) is the identity. Since yy, € Zg (ys), we
have y, = 1. Thus y = ys is contained in a maximally split Cartan subgroup J.
Choose a Cartan involution € which stabilizes J. We write the corresponding
Cartan decomposition G = exp pK and we write / = T A, where T := JNK and
A= Jnexpp. Wecanwritey = texp(Y ) wheret € T, Y € a. Define a compact
subset of G by S:= K {expsY : 0 <s < 1}. Then S()S~! D KAK = G.

(IT) Assume that ys is elliptic. Then y, # 1 since (y) = {yIy!:ne€Z} is
discrete in G. By the theorem of Jacobson-Morozov, there is a Lie group ho-
momorphism y : SL(2,R) — G such that w ((} 1)) = pu. There is a Cartan
involution 6 of G such that 8y (SL(2,R)) = w(SL(2,R)) (see ref. [He], p.
277). In particular, 4 := y/({(gag. ) : a>0}) is a maximally split abelian
subgroup of G, which is of R-rank 1. Define a compact subset of G by S :=
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Ky ({(§1):0< x < 1})(ps). Then

SHYS 5 Ky ({ ((1) )1‘) xe R}) K

O Ky (SL(2,R)) K D KAK = G. O

Theorem 3.3. Let G be a connected reductive linear Lie group. Then the following
conditions are equivalent.

(1)R-rank G > 2.

(2) There exist infinite discrete subgroups I of G (i = 1, 2) such that I' :=
I x I acts properly discontinuously on the group manifold G x G/ diagG.

Proof. We may restrict ourselves to the case where G is non-compact, namely,
where R-rank G > 1.

Suppose that R-rank G > 2. We can find abelian subspaces a;, a, C a such that
dima; > | and that W (g,a)-a;Nay = {0}. Put 4; := expa;; then A, acts properly
on G /A, from ref. [Kol], theorem 4.1. Take any lattices /; in abelian Lie groups
A; (i = 1,2). Then I acts properly discontinuously on G/I5, or equivalently,
the discrete group I x I3 acts properly discontinuously on G x G/ diag G.

Conversely, suppose that R-rank G = 1. We recall that a subgroup I" of G x &
acts properly on G x G/ diag G iff CI'C~' ndiag G is compact for any compact
subset C of G x G. In particular, if there exists a compact set C in G x G such that
CI'C~!' = G x G, then I" acts on G x G/ diag G properly only if G is compact.
LetI; (i = 1, 2) be both infinite discrete subgroups of G. It follows from lemma
3.2 that there exists a compact set S of G such that ST;S~! = G. In particular,
(S xS)U1 x)(S7!' xS ") = G x G. Therefore the action of I} x I3 on
G x G/ diag G is not properly discontinuous because G is non-compact. O

Corollary 3.4. Let G be a connected non-compact reductive linear group. Then
the following conditions are equivalent.

(1)R-rank G = 1.

(2) Any torsionless discontinuous group I' in G x G/ diag G is of the following
Jorm up to a switch of factor: I' = {(y,p(y)) :y € @}, with @ C G a subgroup
and with p : ® — G a homomorphism.

Proof. (2) = (1) If R-rankG > 2, then there exist discrete subgroups I; ~
Z™ (n; > 1) of G such that I'| x I’ acts properly discontinuously on G x G/ diag G
from theorem 3.3.

(1) = (2) Suppose that I is a torsion free discontinuous group acting on
G x G/diagG. Let p; : G x G — G (j = 1,2) be natural projections to the jth
factor. Let I'; : = Kerp;NI for j = 1,2. Then I} x I3 is regarded as a subgroup of
I' ¢ GxG,andsois also a discontinuous group acting on G x G/ diag G. It follows
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from theorem 3.3 that at least one of /; must be finite if R-rank G = 1. We can
assume [ is a finite group after switching factor if necessary. As I is torsion-
free, a finite subgroup /| must be trivial, namely, py r : I' — G is injective. Now
I is of the desired form if we define @ := p;(I") and p := p, opll}l. O

The author would like to thank Professors A. Borel, C. Conley, I.M. Gel’fand
and W.M. Goldman for their comments and interest in this work.
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